
UMIACS-TR-88-92
CS-TR-2158

December, 1988

Towards A Comprehensive Framework for Reuse:']" _

A Reuse-Enabling Software Evolution Environment _] __"_"
V. R. Basili and H.D. Rombach : _(_'/_

Institute for Advanced Computer Studies _J]
-!

Department of Computer Science
University of Maryland

College Park, MD 20742

ABSTRACT

Reuse of products, processes and knowledge will be the key to enable the

software industry to achieve the dramatic improvement in productivity and quality re-

quired to satisfy the anticipated growing demands. Although experience shows that

certain kinds of reuse can be successful, general success has been elusive. A software

life--cycle technology which allows broad and extensive reuse could provide the means

to achieving the desired order--of-magnitude improvements. This paper motivates and

outlines the scope of a comprehensive framework for understanding, planning, evaluat-

ing and motivating reuse practices and the necessary research activities. As a first step

towards such a framework, a reuse-enabling software evolution environment model is

introduced which provides a basis for the effective recording of experience, the gen-

eraiization and tailoring of experience, the formalization of experience, and the (re-)use

of experience.

t Research for this study was SUplX>rted in paa by NASA grant nSG-5123, ONR grant N00014--87-K--0307 and Airmics grant

DE-AC05--OR21400 to th_ University of Maryland. _ V. Basili
Univ. of MD
1 of 47

TABLE OF CONTENTS:

1 INTRODUCTION ...

2 SCOPE OF A COMPREHENSM,2 REUSE FILAMEWORI(..............................

3 A REUSE-ENABLING ENVIRONMENT MODEl ..

3.1 Implicit Learning and Reuse ...

3.2 Explicit Modeling of Learning and Reuse ..

3.2.1 Recording Experience ...

3.2.2 Generalizing & Tailoring Existing Experience Prior to its Potential
Reuse ..

3.2.3 Formalizing Existing Experience Prior to i'_s Potential Reuse

3.2.4 (Re--) Using Existing Experience ...

4 TAME: AN INSTANTD'_TION OF THE REUSE-ENABLING ENVIRON-

MENT MODEI ...

5 CONCLUSIONS ...

6 ACKNOWLEDGEMENTS ..

7 REFERENCES ...

7

8

10

11

12

15

16

17

20

21

21

V. Basili
Univ. of MD
2 of 47

1. INTRODUCTION

The existinggapbetweenthe demandand our ability to producehigh qualitysoftware

cost-effectivelycallsfor improvedsoftwarelife-cycletechnology.A reuse-enablingsoftwarelife-

cycletechnologyis expectedto contributesignificantlyto higherqualityandproductivity.Qual-

ity canbeexpectedto improveby reusingprovenexperiencein theform of products,processes

andknowledge.Productivitycanbeexpectedto increaseby usingexistingexperienceratherthan

developingit fromscratchwheneverneeded.

Reusingexistingexperienceis thekeyto progressin any area.Without reuseeverything

mustbe re-learnedandre-created;progressin aneconomicalfashion is unlikely. Duringthe

evolutionof software,weroutinelyreuseexperiencein theformof existingproducts(e.g.generic

Ada components, design documents, mathematical subroutines), processes (e.g., design inspections

methods, compiler tools), and domain-specific knowledge (e.g., cost models, lessons learned, meas-

urement data). Most reuse occurs implicitly in an ad-hoc fashion rather than as the result of

explicit planning and support. While reuse is less institutionalized in software engineering than in

other engineering disciplines, there exist some successful cases of reuse, i.e. product reuse. Reuse in

software engineering has been successful whenever the reused experience is self-describing, e.g.,

mathematical subroutines, or the stability of the context in which the experience is reused com-

pensates for the lack of self-description, e.g., reuse of high-level designs across projects with simi-

lar characteristics regarding the application domain, the design methods, and the personnel. In

software engineering, the potential productivity pay-off from reuse can be quite high since it is

inexpensive to store and reproduce software engineering experience compared to other engineer-

ing disciplines.

The goal of research in the area of reuse is the achievement of systematic methods for effec-

tively reusing existing experience to maximize quality and cost benefits. Successful reuse depends

on the characteristics of the candidate reuse objects, the characteristics of the reuse process

* TSe term "evolution" is used in this paper to comprise the entire sortware life-cycle (development and maintenance).

V. Basili
Univ. of MD
3 of 47

itself,andthe technicalandmanagerialenvironmentin whichreusetakes place. Interestm

reusabilityhasre-emergedduring the last coupleof years[4,9, 11,12,13,14,15,16,17,19,

20,21I,duein part to thestimulusprovidedbyAdaandin part to our increasedunderstanding

of therelationbetweensoftwareprocessesandproducts.

Ourincremsedunderstandingtellsusthat in orderto improvequalityandproductivityvia

reuseweneeda frameworkwhichallows(a) thereuseof all kindsofsoftwareengineeringexperi-

ence,i.e., products,processesandknowledge,(b) thebetterunderstandingof thereuseprocess

itself,and(c) thebetterunderstandingof thetechnicalandmanagerialevolutionenvironmentin

whichreuseisexpectedto beenabled.

Thispaperpresentsa reuse-enabling software evolution environment model, the first step

towards a comprehensive framework for understanding, planning, evaluating and motivating

reuse practices and the necessary research activities. Section 2 motivates the necessary scope of a

comprehensive reuse framework and the important role of a reuse-enabling software evolution

environment model within such a framework. Section 3 introduces the reuse-enabling software

evolution environment model and discusses its ability to explicitly model the recording of experi-

ence, the generalization and tailoring of experience, the formalization of experience, and the (re-)

use of experience. The'I'_kME model, aspecific instantiation of the reuse-enabling software evo-

lution environment model, is presented m Section 4. This specific instantiation is used to more

specifically describe the integration of the recording and (re-)use activities int, o an improvement

oriented software evolution process.

Before we proceed, we define some crucial t_erms that will be used in this paper so the reader

understands what we mean by them in the software context. We have tailored Webster's general

definitions of these terms to the specific domain of software evolution. Improvement means

enhancing a software process or product with respect to quality and productivity. Learning is the

.,

activity of acquiring experience by instruction (e.g., construction) or study (e.g., analysis). Reuse

is the activity of repeatedly using existing experience, after reclaiming it, with or without

V. Basili
Univ. of MD
4 of 47

modification.Feedback means returning to the entry point of some process armed with the

experience created during prior executions of the process. We use the expression ezperience base

to mean a repository containing all kinds of experience. An experience base can be implemented

in a variety of ways depending on the type of experience stored. An experience bmse may consist

of one or more of the following: traditional databases containing factual pieces of information,

information bases containing structured information, and knowledge bases including mechanisms

for deducing new information [5, 24].

2. SCOPE OF A COMPREHENSIVE REUSE FRAMEWORK

Reuse in most environments is implicit and ad-hoc. When it is explicit or planned, it

predominantly deals with the reuse of code. In Section 1, we expressed our belief that effective

reuse technology needs to be based on (a) the reuse of products, processes and knowledge, (b) a

good understanding of the reuse process itself, and (c) a good understanding of the reuse-enabling

software evolution environment.

To better justify these beliefs, we will describe and discuss the reuse practice in the

Software Engineering Laboratory (SEL) at NASA Goddard Space Flight Center !2, 18]. This is

an example where reuse has been quite successful at a variety of levels, albeit predominantly

implicit. Ground support software for satellites has been developed for a number of years in

FORTRAN. Reused experience exists in the people, methods, and tools as well as in the program

library and measurement database.

To explain reuse in this environment we must first explain the management structure.

There are two levels of management involved in the technical project management. The second

level managers (one from NASA and one from Computer Sciences Corporation, the contractor),

have been managing this class of projects for several years. Specific project managers are typi-

cally promoted from within the ranks, on either side, from the better developers on prior projects.

V. Basili
Univ. of MD
5 of 47

This providesa continuallearningexperiencefor the managementteam. Technicalreviewand

discussionis informalbut commonplace.Lessonslearnedfrom experienceareusedto improve

management'sability to monitorandcontrolprojectdevelopments.

Theorganizationalstructurehasbeenrelativelyconstantfrom projectto project. There

havebeenminorvariations due to improvements in such things as methods and tools which have

evolved from experience or been motivated the literature and verified by experimental data

analysis on prior projects.

The basic systems have been relatively constant. This permits reuse of the application

knowledge as well as the requirements, and design. For example the requirements documents are

quite mixed with regard to the level of specificity. In some places they are quite precise but in

other cases the are very incomplete, relying on the experience of the people from prior projects.

Requirements documents have phrases similar to tile following: Capability X for new satel-

lite $2 is similar to capability X for satellite SI except for the following... This implicitly pro-

vides reuse of prior requirements documents as well as implicitly allows for reuse of prior design

documents and code.

Systems within a class, all have a similar design at the top level and the interfaces among

subsystems are relatively well defined and tend to be relatively error free. Design is implicitly

reused from system to system as specified by the experienced high level managers.

Reuse at l_he code level is more explicit. The software development process used is a reuse

oriented version of the waterfall model. The coding phase begins by seeding the code library with

the appropriately specified elements from the appropriate prior projects. These code component, s

are then examined for their ability to be reused. Some are used as is, others modified minimally,

others modified extensively, and yet others are eliminated and judged easier to develop from

scratch. This is a reuse approach that has evolved over time and has been quite effective.

A variety of tools have evolved that are quite application specific. These include everything

from tools that generate displays needed for testing to application specific system utilities.

V. Basili
Univ. of MD
6 of 47

Knowledgeaboutthesetoolshasbeendisseminatedbyguidancefrom more senior members of the

development team.

The SEL environment is a good example of strong reuse at a variety of levels, in a variety

of ways as part of the software development process. There has been a pattern of learning and

reusing knowledge, processes and products. The use of the measurement database has helped

with project control and schedule as well as quality assessment and productivity [2, 18].

NASA is now considering changing to Ada. Several Ada projects have already been com-

pleted. This has involved an obvious loss in the reuse heritage at the code level, as was antici-

pated. But it has also involved a less obvious and unexpected loss of reuse at the requirements

and design level, in the organizational structure, and even in the application knowledge area.

The initial impact of Ada was staggering because of the implicit, rather than explicit,

understanding of reuse in the environment. This understanding of reuse needs to be formalized.

Based upon the concept that reuse is more than just reuse of code and that it needs to be

explicitly modeled, we need to reconsider how we measure progress in reuse. The measurements

currently used in the SEL are based upon lines of code reused from one project to another. Given

this view, progress may not be related at all to the lines of code reused. We need to measure the

effects of reuse on the resources expended in the entire software life cycle and on the quality of

the products produced using an explicit reuse oriented evolution model. In fact, the process

should allow us measure for any set of reuse-related goals [3, 4, 8, 10]. Changing our models and

our metrics will help us to better understand the effects of the traditional reuse practices and

compare them with the effects of an explicit reuse oriented reuse mode!.

In summary, we believe that a comprehensive reuse framework needs to include (a) a reuse-

enabling software evolution environment model, (b) detailed models of reuse and learning, and (e)

characterization schemes for reuse and learning based upon these models.

V. Basili

Univ. of MD
7 of 47

3. A REUSE-ENABLING ENVIRONMENT MODEL

In thepast,reusehasbeendiscussedindependentof thesoftwareevolutionenvironment.

We believereusecanonly bean effectivemechanismif it is viewedas an integral part,

paired with learning,of a reuse-enablingsoftwareevolutionenvironment.None of the

traditionalengineeringdisciplineshaseverintroduced

(tentof the respectivebuildingprocess.For example,

created"reuselibraries"containingbuildingblocksof all

thereuseof buildingblocksasindepen-

in civil engineeringpeoplehavenot

shapesand structures,andthentried

to usethemto buildbridges,townhouses,high-risesand cottages. Instead,they deviseda

standardtechnologyfor buildingcertain types of buildings (eg., town houses) through a long pro-

cess of understanding and learning. This allowed them to define the needs for certain standard

building blocks at well-defined stages of their construction process. In the software arena we

have not followed this approach.

If we accept the premise that effective reuse requires a good understanding of the environ-

ment in which it is expected to take place, then we must model reuse in the context of a reuse-

enabling software evolution environment. Such a context will allow us to learn how to reuse

better. The ultimate expectation is that such improvement would lead to an ever increasing

usage of generator-technology during software evolution. The ability to automate the generation

of product, s from other products reflects the ultimate degree of understanding the underlying con-

struction processes. Automated processes are easy to reuse. For example, in building compiler

front- ends, we rarely reuse components of other compilers; instead, we reuse the compiler genera-

tors which automate the entire process of building compiler front-ends from formal language

specifications.

In Section 3.1 we discuss how learning and reuse implicitly occur in the context of tradi-

tional software evoh,tion environments. In Section 3.2, we discuss how learning and reuse can be

explicitly modeled in the context of a reuse-enabling software evolution environment.

V. Basili
Univ. of MD
8 of 47

3.1. Implicit Learning and Reuse

During a workshop on "Requirements for Software Development Environments",

held at the University of Maryland in 1985, a view of a software evolution environment was

proposed that consisted of an information system and three information producers and consu-

mers: people, methods, and tools [22]. The information system is defined by a software evolu-

tion process model describing the information, the communication among people, methods

and tools, and the activity sequences for developing and maintaining software.

The traditional software evolution environment model in Figure I is a refinement of this

earlier model.

people methods tOOlS

A A A

... ¥ ¥ ¥

A

Software Evolution Process

A

- products
I

- management plans
I

- schedules _
- project data

PROJECT D_ TABASE

Figure 1: Traditional (non-reuse oriented) Software Evolution Environment Model

V. Basili
Univ. of MD
9 of 47

Thepurposeof thesoftwareevolutionprocessis to produceoutputproducts,e.g.,design

documents,code,frominput products,e.g., requirementdocuments.Peopleexecutethisprocess

manuallyor by utilizingavailablemethodsandtools. Thesemethodsand toolscanbeunderthe

controlof a projectdatabase.All or partof the informationproducedduring thisprocessis

storedin a projectdatabase,e.g., products,planssuchasmanagementplansor schedules,pro-

jectdata.

Typically,supportfor sucha traditionalsoftwareevolutionenvironmentmodelincludesa

projectdatabaseandmeansfor the interactionof peoplewith methods,tools,and the project

databaseduringsoftwareevolution.Theexperienceof people,aswell_ someof the methods

andtools,is usuallynot controlledbytheprojectdatabase.Asa consequence,thisexperienceis

not owned by the organization(via the projectdatabase)but ratherownedby individual

humanbeingsandlostentirelyaftertheprojecthasbeencompleted.

Althoughthe ideasof learningand reuseare not explicitly reflectedin the traditional

softwareevolutionenvironmentmodel,theydo existimplicitly. Theexperienceof the people

involvedin the softwareevolutionprocessandtheexperienceencodedin methodsandtoolsis

reused.In manycases,previouslydevelopedproductsarereusedasinputproducts.In thesame

way,productsdevelopedduringoneactivityof the evolutionprocesscanbe reusedin subse-

quentactivitiesof thissameprocessPeoplelearn(gainexperience)from performingtheactivi-

tiesof theevolutionprocess.Anotherformof implicit learningoccurswheneverproducts,plans,

or projectdataarestoredin theprojectdatabase.

Thebasicproblemin this traditionalenvironmentmodelis not that learningand reuse

cannot occur,but that learningandreusearenotexplicitlysupportedandonlybecauseof indi-

vidualeffortsor byaccident.

V. Basili
Univ.of MD
10of 47

3.2. Explicit Modeling of Learning and Reuse

Systematic improvement of software evolution practices requires a reuse-enabling environ-

ment model which explicitly models learning, reuse and feedback activities, and integrates them

into the software evolution process. Figure 2 depicts such a reuse-enabling en_,'ironment mode]•

........iiiii:i:_ _ :i_ • : : _ i::_:
_i! ::::: _: i:g°fi_wareEv°i_tiOnPr°¢esS "::

i

iiii:i:!:!i::::i:i::i::i::i:i_i:i:._ii.|_6rm sl : :_i_hematizedproducti_ed :

i: \:-: =====================================v#::::i:::::!:::::::::::::::::::::::::::.... i. ::i:;_i.; .. :. : ..

..........=..........GE "-ERAL'_.....-I_-JG----

FB
,i

EXPERIENCE BASE

Figure 2: Reuse-Enabling Software Evolution Environment Model

All the potentially reusable experience, including software evolution methods and tools, are

under the control of an experience base. Improvement is based on the feedback of existing experi-

ence (labeled with "FB _ for reuse in Figure 2). Feedback requires learning and reuse. Systematic

learning requires support for the recording of experience (labeled with "R" for recording in Figure

V. Basili
Univ. of MD
II of 47

2),theoff-line generalizingor tailoringof experience(labeledwith "G" and"T" for generaliz-

ingandtailoringin Figure2),andtile formalizingof experience(labeledwith "F" for formalizing

in Figure2). Off-line generalizationis concernedwith movementof experiencefrom project-

specificto domain-specificandgeneral'off-line tailoringisconcernedwith movementof experi-

encefrom generalto domain-specificanti project-specific.Off-line formalizationis concerned

with movementof experiencefrominformalto schematizedandproductized.Systematicreuse

requiressupportfor (re-)usingexistingexperience(labeledwith "U" for usein Figure2), and
/t

on-line generalizing or tailoring of candidate experience (not explicitly reflected in Figure 2,

because it is assumed to be an integral part, of the (re-)use activity).

Although reuse and learning are possible in both the reuse-enabling and the traditional

environment models, there are significant differences in the way experience is viewed and how

learning and reuse are explicitly integrated and supported. The basic difference between the

reuse-enabling model and the traditional model is that, learning and reuse become explicitly

modeled and are desired characteristics of software evolution.

3.2.1. Recording Experience

The objective of recording experience is to create a repository of well specified and organ-

ized experience. This requires a precise d,_scription of the experience to be recorded, the design

and implementation of a comprehensive experience ba_e, and effective mechanisms for collecting,

validating, storing and retrieving experience We replace the project database of the traditional

environment model by an the more comprehensive concept of an experience base which is

intended to capture the entire body of experience recorded during the planning and execution of

all software projects within an organization. All information flows between the software evolu-

tion process and the experience base reflecting the recording of experience are labeled with "R" in

Figure 2.

" The attributes "on-line" and "off-line" indicate whether the corresponding activities are performed a.s part or indepen-
dent of any particular software evolution project.

V. Basili
Univ. of MD
12 of 47

Examplesof recording experience include such activities as (a) storing of appropriately

documented, catalogued and categorized code components from prior systems in a product

library, (b) cataloguing of a set, of lessons learned in applying a new technology in a knowledge

base, or (c) capturing of measurement data related to the cost of developing a system in a meas-

urement database.

In the SEL example of Section 2, code from prior systems is available to the program

library of the current project although no code object repository has been developed. Measure-

ment data characterizing a broad number of project aspects such as the project environment,

methods and tools used, defects encountered, and resources spent are explicitly stored in the SEL

measurement database [2, 8, 18]. Requirements and design documents as well as lessons learned

about the technical and managerial implications of various methods and tools are implicidy

stored in humans or on paper.

Today it is possible, but not common, to find product libraries. It is even less common to

record process-related experience such as process plans or data which characterize the impact of

certain methods and tools within an organization. There exist two main reasons why we need to

record more process-related experience: (a) it is generally hard to modify existing products

efficiently without any knowledge regarding the processes according to which they were created,

and (b) the effective reuse of process-related experience such as process plans or data could pro-

vide significantly more leverage for improvement than just the reuse of products.

3.2.2. Generalizing & Tailoring Existing Experience Prior to its Potential Reuse

The objective of generalizing existing experience prior to its reuse is to make a candidate

reuse object useful in a larger set of potential target applications. The objective of tailoring exist-

ing experience prior to its potential reuse is to fine-tune a candidate reuse object to fit a specific

task or exhibit special attributes, such as size or performance. These activities require a well-

documented cataloged and categorized set of reuse objects, mechanisms that support the

V. Basili
Univ. of MD
13 of 47

modificationprocess,andanunderstandingof the pocentialtargetapplications.Generalization

andtailoringarespecificallyconcernedwithmovementacrosstheboundariesof the "generality"

dimension:from generalto domain-specificandproject-specificandviceversa.Objectivesand

characteristicsaredifferent,from projectto project,and evenmoreso from environmentto

environment.Wecannotreusepastexperiencewithoutmodifyingit to theneedsof thecurrent

project.Thestabilityof theenvironmentin whichreusetakesplace,aswellastheoriginationof

theexperience,determinetheamountof tailoringrequired.

gxamplesof generalizingandtailoringexperienceincludesuchactivitiesas(a)developinga

genericpackagefrom a specific package, (b) instantiating a generic package for a specific type, (c)

generalizing lessons learned from a specific design technology for a specific application to any

design for that application or any application, (d) or parameterizing a cost model for a specific

environment.

In the SEL, requirements and design documents have implicitly evolved to be applicable to

all FORTRAN projects in the ground support software domain. Measurement data have been

explicitly generalized into domain-specific baselines regarding defects and resource expenditures

{2, 8, 18]. Requirements and designs are implicitly tailored towards the needs of a new project

based on the manager's experience, and code is explicitly hand-modified to the needs of a new

project.

In general, recorded experience is project-specific. In order to reuse this experience in a

future project within the same application domain, we have t_o (a) generalize the recorded project

specific experience into domain specific or general experience and (b) then tailor it again, to the

specific characteristics of the new project. We distinguish between off-line and on-line generaliz-

ing and tailoring activities:

• Off-line generali,.ing and tailoring is concerned with increasing the reuse potential of exist-

ing process and product-related experience before knowing the precise reuse context (i.e., the

-project within which the experience is being reused). Off-line generalization and tailoring is

V. Basili

Univ. of MD
14 of 47

concernedwith movementacrosstheboundariesof thespecificitydimensionwithin theexperi-

encebase:fromgeneralto domain-specificandthento project-specific,andvisaversa.These

activitiesarelabeledwith "G" and"T" in Figure2. An exampleof off-linegeneralizationis

theconstructionof baselines.Theideais to useproject-specificmeasurementdata(e.g.,fault

profilesacrossdevelopmentphases)of severalprojectswithinsomeapplicationdomainandto

createtheapplication-domainspecific fault profile baseline. Each new project within the same

application domain might reuse this baseline in order to control its development process as far

as faults are concerned. An example of off-line tailoring is the adaptation of a general

scientific paradigm such as "divide and conquer" to the software engineering domain.

On-llne tailoring and generalizing is concerned with tailoring candidate process and

product-related experience to the specific needs and characteristics of a project and the chosen

software evolution environment. These activities are not explicitly reflected in Figure 2 because

they are integral part of the (re-)use activity. An example of on-line tailoring is the adapta-

tion of a design inspection method to better detect the fault types anticipated in the current

project [6]. An example of on-line generalization is the inclusion of project specific effort data

from a past project into the domain specific effort baseline in order to better plan the required

resources for the current project. Obviously, this kind of generalization could have been per-

formed off-line too.

It is important to find a cost-effective balance between off-line and on-line tailoring and

generalization. It can be expected that generalization is predominantly performed off-line, tailor-

ing on-line.

A good developer is capable of informally tailoring general and domain specific experience

to the specific needs of his or her project. Performing these transformations on existing experi-

ence assumes the ability to generalize experience to a broader context than the one studied,

or to tailor experience to a specific project. The better this experience is packaged, the better

our understanding of the environment. Maintaining a body of experience acquired during a

V. Basili
Univ. of MD
15 of 47

numberof projectsisone of tile prerequisitesforlearningandfeedbackacrossprojects.

A misunderstandingof the importanceof tailoringexistsin manyorganizations.These

organizationshavespecificdevelopmentguidebookswhichareof limitedvaluebecausethey"are

written for someidealproject"which"h_ nothingin commonwith thecurrentprojectand,

therefore,donot apply"[23].All guidebooks{includingstandardssuchasDOD-STD-2167)are

generalandneedto betailoredto eachprojectinorderto beeffective.

3.2.3. Formalizing Existing ExperiencePrior to its Potential Reuse

Tileobjectiveof formalizingexistingexperiencepriorto its potentialreuseis to increasethe

reusepotentialof a candidate reuse object by encoding it in more precise, better understood ways.

This requires models of the various reuse objects, notations for making the models more precise,

notations for abstracting reuse object characteristics, mechanisms for validating these models, and

mechanisms for interpreting models in the appropriate context. Formalization activities are con-

cerned with movement across the boundaries of the formality dimension within the experience

b_e: from informal to sehematized and then to productized. These activities are labeled with

"F" in Figure 2.

Examples of formalizing experience include such activities as (a) writing functional

specifications for a code module, (b) turning a lessons learned document into a management sys-

tem that supports decision making, (c) building a cost model empirically based upon the data

available, (d) developing evaluation criteria for evaluating the performance of a particular

method, or (e) automating methods into tools.

In the SEL, me_urement data have been explicitly formalized into cost models [1] and error

models enabling the better planning and control of software projects with regard to cost estima-

tion and the effectiveness of fault detection and isolation methods [2, 6, 8, 18 I. Lessons learned

have been integrated into expert systems aimed at supporting the management decision process

[5, 24 l.

V. Basili

Univ. of MD
16 of 47

The morewecarlformalizeexperience,thebetterit, canbereused.Therefore,wetry not

only to recordexperience,but overtimeto formalizeexperiencefromentirelyinformal(e.g.,con-

eepts),to structuredor schematized(e.g.,methods),or evento completelyformal(e.g.,tools).

Thepotentialfor misunderstandingor misinterpretationdecreasesasexperienceisdescribedmore

formally. To the samedegreethe experiencecanbe modifiedmoreeasily,or in the caseof

processes,it maybeexecutedautomatically(e.g.,tools)ratherthanmanually(e.g.,methods).

3.2.4. (Re-) Using Existing Experience

The objective of reusing existing experience is to maximize the effective use of previously

recorded experience during the planning and execution of all projects within an organization.

This requires a precise characterization of the available candidate reuse objects, a precise charac-

terization of the reuse-enabling environment including the evolution process that is expected to

enable reuse, and mechanisms that support the reuse of experience. We must support the (re-)use

of existing experience during the specification of reuse needs in order to compare them with

descriptions of existing experience, the identification and understanding of candidate, the evalua-

tion of candidate reuse objects, the possible tailoring of the reuse object, the integration of the

reuse object into the ongoing software project, and the evaluating of the project's success. All

information flows between the experience base and the software evolution process reflecting the

(re-)use of experience are labeled with "U" in Figure 2.

Examples of reusing experience include such activities as {a) using code components from

the repository, (b) developing a risk management plan based upon the lessons learned from apply-

ing a new technology, (c) estimating the cost of a project based on data collected from past pro-

jects, or (d) using a development method created for a prior project.

In the SEL, reuse needs are informally specified as part of the requirements document.

Matching candidate requirements and design documents are identified by managers who are

experienced in this environment. The evaluation of those candidate reuse objects is in part based

V. Basili
Univ. of MD
17 of 47

on humanexperienceand in part on measurementdata. Theyare tailoredbasedon the

applicationdomainknowledgeof thepersonnel.Theyareintegratedintoaverystableevolution

processbasedonhumanexperience.All thisreuseis implicitexceptfor tile reuseof code,which

althoughexplicit,is informal. It couldonlybesuccessfulbecauseit evolvedwithina verystable

environmentTherecentchangefromFORTRANto Adahasresultedin drasticchangesof this

environmentandasaconsequenceto thelossin the implicitreuseheritage.

Sincethekeyfor improvementof productsis alwaysimprovementof theprocesscreating

thoseproducts,weneedto put equalemphasison the reuseof productand processoriented

experience.Eventoday, we have examplesof reuseof processexperiencesuchas process

plans(standardssuchasDOD-STD-2167,managementplans,schedules)or processdata {error,

effort or reliabilitydata that definebaselinesregardingsoftwareevolutionprocesseswithin a

specificorganization).In mostof thesecasestheactualuseof this informationwithinaspecific

projectcontextis not supported;it is up to therespectivemanagerto find theneededinforma-

tion,andto makesenseoutof it in the contextof thecurrentproject.

4. TAME: AN INSTANTIATION OF THE REUSE-ENABLING ENVIRONMENT

MODEL

Theobjectiveof thereuse-enablingsoftwareevolutionenvironmentmodelof Section32 is

to explicitlymodelthe learningandreuse-relatedactivitiesof recordingexperience,generalizing

andtailoring experience,formalizingexperience,and(re-)usingexperiencesothat theycanbe

understood,evaluated,predictedandmotivated.

In orderto instantiatea specificreuse-enablingenvironment,weneedto choosea modelof

thesoftwareevolutionprocessitself In general,suchanevolutionprocessmodelneedsto becapa-

bleof describingtheintegrationof learningandreuseinto thesoftwareevolutionprocessIn par-

titular, it needsto becapableof modeling when experience is created and recorded into the

V. Basili
Univ. of MD
18 of 47

experiencebaseaswellaswhenexistingexperienceis used.It needsto provideanalysisfor tile

purposeof on-linefeedback,evaluatingtheapplicationof all reuseexperience,andoff-line feed-

backfor improvingtheexperiencebase.

Thereuse-enablingTAME environmentmodeldepictedin Figure3 is an instantiationof

thereuse-enablingsoftwareenvironmentmodelof Section3.2.basedona verygeneralimprove-

mentorientedevolutionprocessmodel.

R

GE ERAL*

EXPERIENCE BASE

Figure 3: Reuse-Enabling "TAME" Environment Model

Each software project performed according to this improvement oriented evolution process

model consists of a planning and an execution stage. The planning stage includes a characteriza-

V. Basili
Univ. of MD
19 of 47

tion of the current status of tile project environment, the setting of project and improvement

goals, and the selection of construction and analysis methods and tools that promise to meet the

stated goals in the context of the characterized environment. The execution stage includes the

construction of output products and the analysis of these construction processes and resulting out-

put products.

Tile "FAME environment model giw_s us a basis for discussing the integration of the record-

ing and (re-)use activities into the software evolution process. During the environment character-

ization stage of the improvement oriented process model we (re-)use knowledge about the needs

and characteristics of previous projects and record the needs and characteristics of the current

project into the experience base. During the goal setting stage we (re-)use existing plans for con-

struction and analysis from similar projects and record tile new plans which have been tailored to

the needs of the current project into the experience base. During the method and tool selection

stage, we (re-)use as many of the constructive and analytic methods and tools which had been

used successfully in prior projects of similar type as feasible and record possibly tailored versions

of these methods and tools into the experience base. During construction we apply the selected

methods and tools, and record the constructed products into the experience base During analysis

we use the selected methods and tools in order to collect and validate data and analyze them, and

record the data, analysis results and lessons learned into the experience ba.se

The "I':MME environment explicitly supports the capturing of all kinds of experience. The

consistent application of the improvement oriented process model across all projects within an

organization provides a mechanism for evaluating tile recorded experience, helping us to decide

what, and how to reuse, tailoring and analyzing. TAME supports continuous learning. The expli-

cit and comprehensive modeling of the reuse-enabling evolution environment including the experi-

ence base, the evolution process, and the various learning and reuse activities (see Figure 3) allows

us to measure and evaluate all relevant aspects of reuse. The measurement methodology used and

supported within the TAME environment has been published in earlier papers [7, 81.

V. Basili
Univ. of MD
20 of 47

5. CONCLUSIONS

In this paperwehavemotivatedandoutlinedthescopeof a comprehensivereuseframe-

work, introduceda reuse-enablingsoftwareenvironmentmodelasa first steptowardssucha

comprehensivereuseframework,andpresenteda first instantiationof suchanenvironmentin the

contextof theTAME(TailoringA MeasurementEnvironment)projectat theUniversityof Mary-

land[7,8].

Thereuse-enablingsoftwareevolutionenvironmentmodelpresentedin Section3 providesa

basicenvironmentfor supportingthe recordingof experience,the off-line generalizationand

tailoringof experience,the off-line formalizationof experience,and the (re-) useof existing

experience.

Furtherstepsrequiredtowardstheoutlinedreuseframeworkaremorespecificmodelsof

eachof theseactivitiesthat differentiatethecomponentsof theseactivities and serve as a basis

for characterization, discussion and analysis. We are currently taking the reuse-enabling software

environment model of section 3.2 down one level and developing a model for (re-)using experi-

ence. Based on this reuse model we will develop a reuse taxonomy allowing for the characteriza-

tion of any instance of reuse. The reuse model will provide insight into the other activities of the

reuse-enabling environment model only in the way they interact with the (re-)use activity,.

Corresponding models for each of the other activities need to be developed and integrated into

the reuse-enabling software environment model.

The reuse-enabling TAME environment model serves as a basis for better understanding,

evaluating and motivating reuse practices and necessary research activities. Performing projects

according to the TAME environment model requires powerful automated support for dealing with

the large amounts of experience and performing the complicated activities of recording, generaliz-

ing and tailoring, formalizing, and (re-)using experience. Indispensable components of such an

automated support system are a powerful experience base, and a measurement support system.

Many of the reuse approaches in the past have assumed that the developer has sufficient implicit

V. Basili
Univ. of MD
21 of 47

knowledgeof the characteristicsof the particularproject environment,specificneedsfor

reuse,thecandidatereuseobjects,etc. It is not trivial to haveall this informationavailable.

The institutionalizedlearning of an organizationand the properdocumentationof that

knowledgeisdefinitelyone of the keysto effectivereuse.Thisleadsto evenbetterspecification

methodsandtools(oneof thefrequentlymentionedkeysto effectivereuse).

Aspartof theTAMEprojectat theUniversityof Marylandwehavebeenworkingonpro-

vidingappropriatesupportfor buildingsuchanexperiencebase,and supportinglearningand

(re-)usevia measurement.Wehavecompletedseveralcomponentstowardsa first prototype

TAMEsystem.Thesecomponentsincludethedefinitionof projectgoalsandtheir refinementinto

quantifiablequestionsandmetrics,thecollectionandvalidationof data, their analysis,andthe

storageof all kindsof experience.Oneof thetoughestresearchproblemsis to usemeasurement

notonlyfor analysis,but alsoforfeedback(learningandreuse)andplanningpurposes.Weneed

moreunderstandingof howto supportfeedbackandplanning.TheTAMEsystemis intendedto

serveasa vehiclefor our researchtowardstheeffectivesupportof explicitlearningandreuseas

_utlinedin thispaper.

8. ACKNOWLEDGEMENTS

Wethankall ourcolleaguesandgraduatestudentswhocontributedto thispaperby either

workingon theTAMEor anyotherreuse-relatedprojector reviewingearlierversionsof this

paper.

7. REFERENCES

[1] J. Bailey, V. R. Basili, A Meta-Modet for Software Development Resource Expenditures," in

Proc. Fifth International Conference on Software Engineering, San Diego, USA, March

1981, pp. 107-116.

V. Basili
Univ. of MD
22 of 47

[2] V.R. Basili,"CanWeMeasureSoftwareTechnology:LessonsLearnedfromEightYearsof
Trying," in Proc.TenthAnnualSoftwareEngineeringWorkshop,NASAGoddardSpace
FlightCenter,Greenbelt,MD,December1985.

I3] V.R. Basili, "QuantitativeEvaluationof SoftwareMethodology,"Dept.of Computer
Science,Universityof Maryland,CollegePark, TR-1519, July 1985 [also in Proc. of
the First PanPacificComputerConference,Australia,September1986].

[4] Victor R. Basili, "SoftwareMaintenance= Reuse-OrientedSoftwareDevelopment,"in
Proc.ConferenceonSoftwareMaintenance,Key-NoteAddress,Phoenix,AZ,October1988.

[5] V.R. Basili,C. LoggiaRamsey,"ARROWSMITH-P- A PrototypeExpert Systemfor
SoftwareEngineeringManagement,"IEEE Proceedingsof the Expert Systemsin
GovernmentSymposium,McLean,VA, October1985,pp. 254-264.

[6] V.R. Basili,H. D. Rombaeh,"Tailoring the SoftwareProcessto Project Goalsand
Environments,"Proc.of the Ninth International Conferenceon SoftwareEngineer-
ing, Monterey,CA, March30- April 2, 1987,pp.345-357.

[7t V.R. Basili,H. D. Rombach,"TAME: IntegratingMeasurementinto SoftwareEnviron-
ments,"TechnicalReportTR-1764(or TAME-TR-l-1987),Dept.of Computer Science,

University of Maryland, College Park, MD 20742, June 1987.

[8] V. R. Basili, H. D. Rombach "The TAME Project: Towards Improvement-Oriented
Software Environments," IEEE Transactions on Software Engineering, vol. SE-14, no. 6,

June 1988, pp. 758-773. [is also available as Technical Report (brMIACS-TR-88-8, CS-

TR-1983, or TAME-TR-2-1988), Department of Computer Science, University of Mary-

land, College Park, ME)20742].

[9] V.R. Basili, H. D. Rombaeh, J. Bailey, and B. G. Joo, "Software Reuse: A Framework,"
Proc. of the Tenth Minnowbrook Workshop on Software Reuse, Blue Mountain Lake,

New York, July 1987.

[10] V. R. Basili, R. W. Selby, D. H. Hutchens, "Experimentation in Software Engineering,"
IEEE Transactions on Software Engineering, vol.SE-12, no.7, July 1986, pp.733-743.

[11] V.R. Basili and M. Shaw, "Scope of Software Reuse," White paper, working group on

'Scope of Software Reuse', Tenth Minnowbrook Workshop on Software Reuse, Blue
Mountain Lake, New York, July 1987 (in preparation).

[12] Ted Biggerstaff, "Reusability Framework, Assessment, and Directions," IEEE Software
Magazine, March 1987, pp.41-49.

[13] P. Freeman, NReusable Software Engineering: Concepts and Research Directions," Proc.
of the Workshop on Reusability, September 1983, pp. 63-76.

[14] R. Prieto-Diaz, P. Freeman, "Classifying Software for Reusability," IEEE Software, vol.4,
no.l, January 1987, pp. 6-16.

[15] IEEE Software, special issue on 'Reusing Software', vol.4, no.l, January 1987.

[16] IEEE Software, special issueon 'Tools: Making Reuse a Reality', vol.4, no.7, July 1987.

[17] G. A. Jones, R. Prieto-Diaz, "Building and Managing Software Libraries," Proc. Comp-

sac'88, Chicago, October 5-7, 1988, pp. 228-236.

[18] F. E. McGarry, "Recent SEL Studies," in Proc. Tenth Annual Software Engineering
Workshop, NASA Goddard Space Flight Center, Greenbelt, MD, Dec. 1985.

[19] Mary Shaw, "Purposes and Varieties of Software Reuse," Proceedings of the Tenth

[2o]

Minnowbrook Workshop on Software Reuse, Blue Mountain Lake, New York, July,
1987.

T. A. Standish, NAn Essay on Software Reuse," IEEE Transactions on Software

Engineering, vol. SE-10, no. 5, September 1984, pp.494-497.

V. Basili
Univ. of MD
23 of 47

THE VIEWGRAPH MATERIALS

FOR THE

V. BASILI PRESENTATION FOLLOW

TOWARD A REUSE-ORIENTED SOFTWARE

EVOLUTION PROCESS

VICTOR R. BASILI
H. DIETER ROMBACH

INSTITUTE FOR ADVANCED COHPUTER STUDIES
AND

DEPARTRENT OF COMPUTER SCIENCE
UNIVERSITY OF IqARYLAND

PAGE_INTENTIONAI, Ly BLANK

V. Basili
Univ. of MD
27 of 47

REUSE OF EXPERIENCE IS THE KEY TO PRODUCTIVITY AND

OUAL ! TY

EXPERIENCE INCLUDES PRODUCTS, PROCESSES AND KNOWLEDGE

MOST REUSE IS AD HOC, IMPLICIT, AT CODE LEVEL

REUSE IqUST BE BUILT INTO THE PROCESS

MODELS OF REUSE-ORIENTED EVOLUTION ENVIRONHENT AND

ACTIVITIES MUST BE DEVELOPED

V. Basili
Univ. of MD
28 of 47

n IPROVE NT PARADIGM

. C_[ARACTERIZE the current project environment

SET UP GOALS and REFINE THEM INTO

QUANTIFIABLE QUESTIONS AND METRICS for
successful project performance and improvement over

previous project performances

CHOOSE the appropriate construction model for this

project and supporting methods and tools

@ EXECUTE the processes and construct the products,

collect the prescribed data, validate it, and provide
feedback in real-time

ANALYZE the data to evaluate the current practices,
determine problems, record the findings and _LkKE
RECOMMENDATIONS FOR IMPROVEMENT

, Proceed to step 1 to START THE NEXT PROJECT,
ARMED WITH THE EXPERIENCE GAINED FROM
THIS AND PREVIOUS PROJECTS

The TAME Project
V. Basili
Univ. of MD
29 of 47

REUSEi m THe SEL

IPIPLICITITHROUGH PEOPLE

APPLICATION l)OIqAII

SOLUTION STRUCTURE

IqANAGEPIENTISUPPORT

EXPLICIT/THROUGH PROCESS

CODE REUSE

QUESTIONS:

WHAT HAPPENS TO REUSE AS WE MOVE FROM FORTRAN TO ADA?

HOW DO WE MEASURE THE EFFECTS OF REUSE?

WHAT IS THE EFFECT OF REUSE ON ALL ASPECTS OF THE

LIFE CYCLE?

V. Basili
Univ. of MD
30 of 47

TRADITIOflAL SOFTWARE EVOLUTION

TYPICALLY SEE'S

PROVIDE THE PROdECT DATA BASE

SUPPORT THE INTERACTION OF PEOPLE WITH METHODS,

TOOLS AND THE PROJECT DATA BASE

EXPERIENCE IS NOT

CONTROLLED BY THE PROJECT DATA BASE

OWNED BY THE ORGANIZATION

REUSE EXISTS IHPLICITLY

V. Basili
Univ. of MD
31 of 47

TRADITIONAL SE MODEL

!

I

e

!

!

!

V

- i_r_

- iprocem & product opeco

omo

W

em_

PROJECT DATABASE

V. Basili
Univ. of MD
32 of 47

A REUSE-ORIENTED EVOLUTIOII ENVIRONIqlENT MODEL

MHAT ARE THE COMPONENTS OF A REUSE-ORIENTED EVOLUTION

MODEL?

HOW CAN THE REUSE PROCESS IqODEL BE INCORPORATED INTO

THE CONTEXT OF DEVELOPMENT AND IqAINTENANCE?

HOW CAN LEARNING AND FEEDBACK BE USED TO SUPPORT THE

REUSE MODEL?

V. Basili
Univ. of MD
33 of 47

DEFINITIONS

IMPROVEMENT

ENHANCING A SOFTWARE PROCESS OR PRODUCT WITH RESPECT

TO QUALITY OR PRODUCTIVITY

FEEDBACK

RETURNING TO THE ENTRY POINT OF SOME PROCESS ARMED

WITH THE EXPERIENCE GAINED FROM PREVIOUS PERFORMANCES

OF THIS PROCESS

LEARNING

THE ACTIVITY OF ACOUIRING KNOWLEDGE BY INSTRUCTION,

E.G., CONSTRUCTION, OR STUDY, E.G., ANALYSIS

REUSE

THE ACTIVITY OF REPEATEDLY USING EXISTING EXPERIENCE,

AFTER RECLAIMING IT, WITH OR WITHOUT MODIFICATION

EXPERIENCE BASE

A REPOSITORY OF ALL KINDS OF EXPERIENCE

V. Basili
Univ. of MD
34 of 47

RELATIONSHIP OF THE TERRS

IRPROVERENT OF A SOFTNARE PROCESS OR PRODUCT

REOUIRES THE FEEDBACK OF AVAILABLE EXPERIENCE INTO

SOME PROCESS

FEEDBACK

REQUIRES THE

ACCUMULATION OF EXPERIENCE (LEARNING)

INTO SOME AVAILABLE RESOURCE (EXPERIENCE BASE)

THE USE OF THIS EXPERIENCE FOR A PARTICULAR

PURPOSE (REUSE)

EXPERIENCE BASES CAN BE DATA BASES,]NFORPLATION BASES,

KNOWLEDGE BASES OR ANY COHBINATION OF THE THREE

V. Basili
Univ. of MD

35 of 47

RE-USE ORIENTED SE MODEL

.,.;

!:!._:,..i• • " -ii̧ :.:.: :

.:x_ k :..

!_ _:: .;..

"' i

;. - i:'.!. :i.-'" i ...:':..': ",- -

Software Evolution Process .:.ii

• • : d - . .. • "

:'i " ,i %' _ ._o
. . J "_. ,,,, _" ,- -:... • • .

: informal Kbematis4ed productil_<!

t

\

: PROJE_ T SPECIFIC

Do_ .• MA NSP_C

---'................-'--,t....

G£ _ER^ F "

P

•. ••,'•• • i ¸ • -

f

EXPERIENCE BASE

V. Basili
Univ. of MD
36 of 47

SYSTEMATIC LEARNING AND REUSE

SYSTEI_TIC LEARNING REOUIRES SUPPORT FOR

RECORDING EXPERIENCE

OFF-LINE GENERALIZING OR TAILORING OF EXPERIENCE

FORMALIZING OF EXPERIENCE

SYSTEPLATIC REUSE REOUIRES SUPPORT FOR

USING EXISTING EXPERIENCE

ON-LINE GENERALIZING OR TAILORING OF CANDIDATE EXPERIENCE

BOTH LEARNING AND REUSE NEED TO BE I_TEGRATED INTO AN

OVERALL SOFTWARE EVOLUTION MODEL

V. Basili
Univ. of MD
37 of 47

RECORDING EXPERIENCE

OBJECTIVE:

CREATE A REPOSITORY OF NELL-SPECIFIED AND CLASSIFIED

EXPERIENCE

REQUIREMENTS:

EFFECTIVE MECHANISMS FOR COLLECTING, VALIDATING, STORING

AND RETRIEVING EXPERIENCE

EXAMPLES:

STORING OF CODE COMPONENTS FROM PRIOR SYSTEMS IN A

REPOSITORY, APPROPRIATELY DOCUMENTED, CATALOGED AND

CATEGORIZED

CATALOGING OF A SET OF LESSONS LEARNED IN APPLYING A NEW

TECHNOLOGY

SAVING MEASUREMENT DATA IN A DATA BASE ON THE COST OF

DEVELOPING A SYSTEM

RECORDING A DEVELOPMENT METHOD FOR USE ON THE NEXT PROJECT

V. Basili
Univ. of MD
38 of 47

(RE-)USING EXISTING EXPERIENCE

OBJECTIVE:

MAXIMIZING THE EFFECTIVE USE OF PREVIOUSLY RECORDED

EXPERIENCE DURING THE PLANNING AND EXECUTION OF ALL

PROJECTS WITHIN AN ORGANIZATION

REQUIREMENTS:

SPECIFICATION OF THE REUSE ENVIRONMENT

CHARACTERIZED CANDIDATE REUSE OBJECTS

AVAILABLE EXPERIENCE

A PROCESS IN WHICH WE

SPECIFY REUSE NEEDS

FIND APPROPRIATE CANDIDATES

EVALUATE REUSE CANDIDATES

MODIFY THE REUSE CANDIDATE

INTEGRATE THE REUSE CANDIDATE INTO THE PROCESS

TEST THE INTEGRATED OBJECT WHICH INCLUDES THE REUSE OBJECT

EXAMPLES:

USING CODE COMPONENTS FROM THE REPOSITORY

DEVELOPING A RISK RANAGEMENT PLAN BASED UPON LESSONS LEARNED

IN APPLYING A NEW TECHNOLOGY

ESTIMATING THE COST OF A PROJECT USING DATA ON PAST PROJECTS

,USING A DEVELOPMENT METHOD CREATED FOR A PRIOR PROJECT

V. Basili
Univ. of MD
39 of 47

6ENERALIZING OR TAILORING OF EXISTING EXPERIENCE

PRIOR TO ITS REUSE

OBJECTIVE: GENERALIZING

MAKING A CANDIDATE REUSE OBJECT USEFUL IN A LARGER SET OF

POTENTIAL TARGET APPLICATIONS

OBJECTIVE: TAILORING

FINE-TUNING A CANDIDATE REUSE OBJECT TO FIT A SPECIFIC TASK

OR EXHIBIT SPECIAL ATTRIBUTES, SUCH AS SIZE OR PERFORMANCE

NOTE:

GENERALIZING AND TAILORING CAN BE ON-LINE OR OFF-LINE

ON-LINE: DONE FOR A SPECIFIC PROJECT

OFF-LINE: THE PRECISE REUSE CONTEXT NOT KNOWN A PRIORI

REQUIREMENTS:

A WELL-DOCUMENTED CATALOGED AND CATEGORIZED SET OF REUSE OBJECTS

MECHANISMS FOR EASY MODIFICATION

AN UNDERSTANDING OF THE POTENTIAL TARGET APPLICATIONS

EXAMPLES:

DEVELOPMENT OF A GENERIC PACKAGE FROM A SPECIFIC PACKAGE

|NSTANTIATING A GENERIC PACKAGE FOR A SPECIFIC DATA TYPE

GENERALIZING THE LESSONS LEARNED FROM A SPECIFIC DESIGN TECHNOLOGY

FOR A SPECIFIC APPLICATION TO ANY DESIGN FOR THAT

APPLICATION OR ANY APPLICATION

V. Basili
Univ. of MD
40 of 47

PARAMETER|ZING A COST MODEL FOR A SPECIFIC ENVIRONMENT

NODIFYING THE DESIGN INSPECTION PROCESS BASED UPON A HISTORY

OF THE DEFECTS I_DE IN THE SPECIFIC ENVIRONHENT

V. Basili
Univ. of MD
41 of 47

FORMALIZATION OF EXPERIENCE

OBJECTIVE:

THE ENCODING OF EXPERIENCE IN MORE PRECISE, BETTER UNDERSTOOD NAYS

REQUIREMENTS:

MODELS OF VARIOUS REUSE OBJECTS

NOTATIONS FOR MAKING THE PK)DELS RORE PRECISE

NOTATIONS FOR ABSTRACTING REUSE OBJECT CHARACTERISTICS

MECHANISMS FOR VALIDATING THE IqODELS

MECHANISMS FOR INTERPRETING MODELS IN CONTEXT

EXAMPLES:

WRITING THE FUNCTIONAL SPECIFICATION OF A CODE MODULE

TURNING A LESSONS LEARNED DOCUMENT INTO A MANAGEMENT SYSTEM

THAT SUPPORTS DECISION MAKING

BUILDING A COST MODEL EMPIRICALLY BASED UPON DATA AVAILABLE

DEVELOPING EVALUATION CRITERIA FOR EVALUATING THE PERFORHANCE

OF A PARTICULAR METHOD

AUTOMATING METHODS INTO TOOLS

V. Basili
Univ. of MD
42 of 47

INTEGRATION OF REUSE AND LEARNING INTO A

SOFTNARE EVOLUTION PROCESS I_ODEL

OBJECTIVE:

TO SUPPORT THE LEARNING AND REUSE PROCESSES IN A WELL-SPECIFIED,

ORGANIZED, NATURAL WAY SO THAT IT CAN BE UNDERSTOOD, EVALUATED,

PREDICTED AND PiOTIVATED

REOUIREMENTS:

SUPPORT MECHANISMS FOR

RECORDING NHAT HAS BEEN LEARNED

(RE-)USING AND ON-LINE TAILORING OR GENERALIZING

OFF-LINE TAILORING

FORMALIZATION

EXAMPLES:

A REPOSITORY FOR ALL POSSIBLE CANDIDATE REUSE OBJECTS INCLUDING

METHODS, TOOLS, PRIOR PROJECT DOCUMENTS (CODE, REOUIREMENTS,

RISK MANAGEMENT PLANS)

A SET OF MODELS FOR VARIOUS PROCESSES AND PRODUCTS

A MEASUREMENT DATA BASE

A KNOWLEDGE BASE THAT SUPPORTS MANAGEMENT DECISION-MAKING

BASED UPON DATA, LESSONS LEARNED AND OTHER AVAILABLE

INFORMATION

V. Basili
Univ. of MD
43 of 47

IMPROVEMENT RE-USE ORIENTED SE RODEL

V. Basili
Univ. of MD
44 of 47

OE POOR QUP, L|TY

REUSE-ENABLING

SOF_ARE EVOLUTION PROCESS

object/context

EXPERIENCE BASE

V. Basili
Univ. of MD
45 of 47

REUSE-ENABLING

SOFTWARE EVOLUTION PROCESS

¢
m

_9

c: reuse context

2.2: evolution context

2.1: system ¢ontex

0_2: object I

!

!

I

p: reuse process]

................iii.iiiiiiii
o_l: object']

¢ 1.1: system contez

c 1.2: evolution context

.......... o....,

.. o ... _..o_o°....o.._o •

EXPERIENCE BASE

V. Basili
Univ. of MD
46 of 47

CONCLUSIONS

GENERAL

NEED INTEGRATED RODELS OF ALL THE ACTIVITIES/

E.G,, BALANCE |ETMEEN REUSE AND TAILORING

NEED TO USE MODELS AND PROJECT 6OALS TO DEVELOP USEFUL

REASURES

GOALS AND EFFECTS OF REUSE RUST BE EXPLICITLY STATED SO

NE CAN CHARATERIZEo EVALUATE, PREDICT AND IqOTIVATE

REUSE

SEL

MOVING TO ADA (OR ANY NEW TECHNOLOGY) COSTS IN THE SHORT

RUN° BUT AN EXPLICIT REUSE CHARACTERIZATION CAN HELP

EFFECT IS HORE THAN LINES OF CODE REUSED

ARE HO¥ING TOWARD BUILDING AN EXPERIENCE BASE TO SUPPORT

TAILORING AND REUSE

V. Basili
Univ. of MD
47 of 47

